
1.  Introduction
Coastal communities around the world are confronting the growing challenge of sea-level rise (SLR). In the 
United States, 6  ft of SLR by 2100 could affect 1.7 million homes and up to 3.6 million people (Bernstein 
et al., 2019; Hauer et al., 2016). Already, coastal communities from Florida to Alaska are actively investing in 
reducing their risk from SLR, whether through a full community relocation or large-scale infrastructure invest-
ments (Bronen & Chapin, 2013; Gornitz et  al.,  2020; Molinaroli et  al.,  2019). Long before communities are 
permanently inundated, they experience recurrent flooding (Dahl et al., 2017). As local SLR and heavy rainfall 
events increase, so does the frequency of flooding in low-lying coastal areas (Sweet et al., 2018). The tidal cycle 
now takes place on higher average sea levels, resulting in “sunny-day” flooding of roadways during high tides. 
Because sea water infiltrates drainage systems at even low tidal levels (Gold et al., 2022), ordinary rain storms 
can now cause flash floods. We refer to locations that experience flooding multiple times per year, from drivers 
other than extreme storms (e.g., tropical cyclones, nor'easters), as chronically flooded.

It is well-established that higher sea levels will lead to more frequent flooding, but it is not clear which areas 
will be affected, how quickly, and how intensely. Chronic coastal flooding is difficult to monitor because the 
floods are hyper-local, creating a patchwork of affected intersections, blocks, or homes, and because floods can 
be caused by multiple sources. While chronic flooding is often associated with tidally driven sunny-day flood-
ing, it can also be influenced by groundwater, wind, rainfall runoff, and riverine discharge (Loftis et al., 2018; 
Moftakhari et al., 2017). Analysis of tide gauge data has shown that non-tidal residuals are particularly important 
components of floods along the mid-Atlantic coast of the United States (Li et al., 2022). The role of stormwater 
drainage systems is also poorly understood. In Norfolk, VA, recent instrumentation efforts have shown that SLR 
has reduced the city's stormwater system capacity by 50% (independent of the tide), and thus is hampering the 
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ability of the system to handle heavy rainfalls (Coutu, 2021). The viability of stormwater systems is also affected 
by rising groundwater, which has led to corrosion and failure of underground infrastructure in Hawaii and Florida 
(Befus et al., 2020; Habel et al., 2020), a problem that is likely to occur elsewhere. The influence of subterra-
nean infrastructure on flooding is not typically included in large-scale SLR driven flood risk assessments (e.g., 
“bathtub” inundation modeling approaches, Sweet et al., 2018) or smaller-scale assessments of compound coastal 
floods (Jane et al., 2020).

While local residents often know of problem areas to avoid, information on the drivers, frequency, and spatial 
extent of these floods is rarely gathered systematically. One commonly used proxy for flood incidence (i.e., an 
indirect measure of flooding on land) is tide gauge water levels exceeding a locally defined threshold. Some 
National Oceanic and Atmospheric Administration (NOAA) tide gauges have impact-based flooding thresholds 
created by local National Weather Service (NWS) Forecast Offices for issuing flood advisories. These thresholds 
can be revised periodically based on local infrastructure vulnerabilities and are therefore challenging to use for 
determining how flood frequency changes over time. For this purpose, the NOAA National Ocean Service devel-
oped the “high-tide flooding” (HTF) thresholds using a nationally consistent approach to define a threshold for 
each tide gauge (Sweet et al., 2018). These thresholds are not based on impacts on land but rather derived from a 
statistical (regression) relationship for water levels measured at NOAA tide gauges. Using the HTF thresholds, 12 
NOAA tide gauges set records for flood frequency in 2018, and nationally, flood frequency is expected to double 
or triple by 2030 (Sweet et al., 2020).

These tide gauge-based proxies for coastal flooding clearly show the implications of rising sea levels, but as an 
indirect measure of flooding on land, they likely paint an incomplete picture. First, the U.S. tide gauge network is 
sparse, and water levels can vary substantially over small geographies due to different winds, bathymetry, prox-
imity to rivers or inlets, and other characteristics. Tide gauges also only show contributions to flooding within 
large water bodies (tides, surge, river discharge), and they will miss events that occur due to a combination of 
land-based sources (rainfall runoff, groundwater, infrastructure). Moore and Obradovich (2020) found that local 
tweets about flooding increased well before tide gauge water levels surpassed the NWS minor flood thresholds 
in several major cities. This suggests flooding may be occurring more often than existing flood proxies indicate.

There have been several recent efforts to develop instrumentation for measuring chronic floods, the majority 
of which rely on ultrasonic depth sensors (i.e., air sonars). The FloodNet sensor (Silverman et  al.,  2022) is 
open-source and uses downward-looking ultrasonic sensors to detect street flooding by attaching the sensors to 
subaerial structures (e.g., street signs); the data are communicated in real-time using long-range radio (LoRa, 
FloodNet,  2022). Because the sensor is deployed subaerially, it cannot capture subterranean impairments to 
stormwater networks that may contribute to street floods. The StormSensor, which also relies on an ultrasonic 
depth sensor, is proprietary and is designed to be deployed within storm drains while still communicating data 
at regular intervals using LoRa. Notably, a nonprofit spent $280,000 USD to collect data on stormwater capacity 
in Norfolk using 25 of the StormSensors in 2021 (Coutu, 2021). In addition to the high cost, upon submergence, 
the StormSensors (and all ultrasonic depth sensors) cannot provide information about street water levels or flood 
extent. Pressure transducers are commonly used to measure water depths in water bodies at low-cost (Lyman 
et al., 2020; Maisano et al., 2019; Temple et al., 2020; Ware & Fuentes, 2018), however, they similarly only 
provide information about water levels at a single point. If deployed within a storm drain, real-time communica-
tion can also be impeded by stormwater infrastructure (grates, pipes). While not necessary for measuring flood 
incidence, real-time communication ensures no loss of data (e.g., due to sensor damage) and allows data to be 
used for hazard identification by stakeholders, practitioners, and researchers alike.

Here we present the utility of a new sensor framework for measuring the incidence and drivers of chronic floods. 
The sensor framework—which we coin SuDS: the Sunny Day flood Sensors (SuDS)—consists of a pressure 
logger deployed within a storm drain and a subaerially mounted communications gateway equipped with a 
camera. Data are streamed to a web-based (open-source) platform for real-time communication of chronic flood 
hazards. This framework overcomes limitations of existing instrumentation by (a) identifying street flooding 
from a combination of subterranean and subaerial sources and (b) allowing for real-time communication of water 
depths and visual confirmation of flood extent. Further, the sensor framework is open-source and can be manu-
factured using online tutorials at low-cost. We confirm through a 5-month deployment of the SuDS in Beaufort, 
North Carolina (NC) that land-based sources contribute significantly to chronic coastal floods at this location 
and consequently, flood frequency is higher than that suggested by proxies that rely exclusively on tide gauge 
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water levels for determining flood incidence (i.e., the NWS and NOAA HTF 
thresholds).

2.  Materials and Methods
Detailed step-by-step instructions for manufacturing the SuDS framework 
are available online (Hayden-Lowe et al., 2022). Sensor hardware and soft-
ware are all open-source. At the time of publication, the SuDS framework 
costs approximately $650 USD to manufacture (excluding handheld tools, 
3D printers, and soldering irons), which is comparable to the cost of a single 
commercial (real-time) pressure transducer. Herein we summarize both 
sensor components—the in situ pressure logger and the subaerial camera and 
gateway—and the workflow for real-time communication. We then describe 
the initial SuDS deployment in Beaufort, NC.

2.1.  Pressure Logger in Storm Drain

We designed a pressure logger that can be deployed in storm drains to meas-
ure real-time water levels coming into storm drains from both below (e.g., 
tides) and above (e.g., rainfall) while transmitting these data to a subaerial 
communications gateway (Figure 1a). All electronics for the pressure logger 
are located within a watertight PVC housing attached to the bottom of the 
grate covering the storm drain. The electronics housing connects to the pres-
sure transducer via a vertical PVC pipe that extends to near the bottom of the 
drain (Figure 1b). We use a low-cost BlueRobotics pressure transducer that 
can measure up to 10 m depths with a reported depth resolution of 0.16 mm. 
The transducer communicates with an open-source data logger (SparkFun 
OpenLog Artemis) that records absolute pressure and temperature, which is 
later converted to water depth in the cloud (Section 2.3). The real-time data 

collected by the data logger are transmitted via Bluetooth to a communication gateway (described below) using 
a low-energy Bluetooth board. The logger electronics are powered with three D-cell batteries and secured to the 
PVC electronics housing using custom 3D-printed mounts (Figure 1d). The D-cell batteries in the pressure logger 
are replaced approximately every 4–6 months.

Pressure is sampled every 6 min, but this rate can be modified to suit local conditions. The data logger and 
Bluetooth board are powered off between samples to reduce battery consumption. The logger is mounted at an 
elevation in the storm drain so that the pressure transducer is out of water and able to dry at least once every 
24 hr; this is a requirement for proper functionality of the transducer (as prescribed by the manufacturer). When 
the pressure logger is entirely submerged, the Bluetooth connection with the gateway is lost, and data are stored 
locally on the data logger. Once the water recedes, the Bluetooth connection is reestablished and the previously 
logged data are downloaded by the gateway. The pressure transducer is sensitive to temperature. To account for 
this, we calibrate each transducer in the lab by recording pressure at known depths for a range of temperatures 
(Figure S1 in Supporting Information S1). The results are used to develop a transducer-specific equation that 
corrects the pressure readings for temperature. This calibration also serves as (pre-deployment) validation for 
the manufacturer-supplied accuracy of the pressure transducer: ±2 mbar/yr in the 0°C–60°C operating range. 
Raw pressure readings are corrected for temperature at the communications gateway (Section 2.2) and drift is 
corrected in the cloud (Section 2.3).

2.2.  Subaerial Camera and Communications Gateway

The camera and communications gateway (collectively referred to as “the gateway” herein) is mounted to a light 
post within Bluetooth range of the pressure logger (Figure 1a). Although not limited to deployment on light 
posts, the gateway requires an electrical outlet for power and must be within range of an accessible WiFi signal. 
The gateway contains a Raspberry Pi 4 Model B Quad Core computer (with Bluetooth and WiFi) running the 
Linux-based Raspberry Pi OS, an uninterruptible power supply module, and an adjustable focal length camera, 

Figure 1.  (a) Installation of the Sunny Day Flood Sensors (SuDS) in Beaufort, 
North Carolina. The SuDS consist of (b) a pressure logger deployed within a 
storm drain and (c) a subaerially mounted communications gateway equipped 
with a camera. The gateway is powered by an outlet on the light post. (d) 
Internal view of the pressure logger. The SuDS are open-source and can be 
manufactured using online tutorials at low cost.



Water Resources Research

GOLD ET AL.

10.1029/2022WR032392

4 of 12

all housed in a waterproof, polycarbonate enclosure retrofitted with an opti-
cal dome. Heatsinks and a CPU fan prevent gateway components from over-
heating. All components are secured within the waterproof enclosure using a 
DIN rail and custom 3D-printed mounts (Figure 1c).

The gateway manages communication between both the pressure logger and 
cloud data storage. Communication errors from events such as logger submer-
gence and weak signal strength along either link are handled in the following 
manner. A continuously running Python program manages data flowing both 
from the pressure logger and to the cloud-based database. Data  flow is shown 
in Figure 2. Upon collecting a sample, data collected on the pressure logger 
are stored to an internal file and transmitted over Bluetooth to the gateway. 
Bluetooth is then powered off and the logger enters a deep sleep mode to 
conserve power until the next sample. The gateway is always watching for 
the Bluetooth signal to appear. When it does, a connection is established 
and the gateway waits a predetermined amount of time for data to appear 
from the pressure logger. If data are not received within the expected time an 
attempt is made to recover from an error condition. Otherwise, if valid data 
are received, it is checked to see if it is sequential with previously received 
data. If so, the record is logged to files on the gateway. If it is not sequen-
tial, then the gateway downloads the relevant file(s) from the pressure logger 
filesystem to catch up. The gateway then attempts to transmit data through 
a data application programming interface (API) to the cloud (Section 2.3). 
If the gateway is in “catch-up” mode, the database is polled to find the most 
recent observation, and data are transmitted using the data cache stored in 
the gateway filesystem. Since pressure data are stored both on the logger 
and the gateway, gaps in the data can be recovered automatically despite any 
communication lapses.

Image acquisition is scheduled by time (every 6  min) using a built-in 
Linux-based Cron facility. This enables visual confirmation of roadway 
flooding and provides an indication of flood extents. Images are written to 
the gateway's local storage and kept for 4 weeks. Images are transmitted to 
cloud storage through a photo API by first polling the database to find the 
most recent image and continuing from that point.

2.3.  Data Processing and Storage in the Cloud

The general workflow of data transmission to the cloud is shown in Figure 2. Two APIs are used to route raw 
data from the gateway to cloud storage. The “photo” API receives images from the Raspberry Pi and saves them 
to Google Drive. The data API receives raw temperature and pressure data from the Raspberry Pi and stores it 
in a cloud-hosted PostgreSQL database table. Both APIs were created using the FastAPI framework in Python 
(https://fastapi.tiangolo.com), containerized using Docker (Merkel, 2014), and deployed on RedHat's OpenShift 
platform. The APIs offer functions that respond to “POST” and “GET” requests to communicate with the Rasp-
berry Pi and prevent duplicate data transmission (double sided arrows in Figure 2).

Raw pressure and temperature data are post-processed in the cloud. A scheduled processing function runs every 
6 min and converts the raw absolute pressure data into water depth (above the pressure transducer) using atmos-
pheric pressure data from the closest NOAA tide gauge. Water depth is then assessed for quality control issues 
(e.g., erroneous jumps in pressure) and converted to drift-corrected water levels relative to the road and NAVD88. 
Drift is common in low-cost pressure transducers (Lyman et al., 2020). Here, we identify and correct for drift 
by setting the running minimum water depth equal to zero (i.e., when no water is in the storm drain and the 
pressure transducer is recording atmospheric pressure). The methodology for drift correction is shown in Figure 
S2 in Supporting Information S1. Notably, although the pressure transducer used in the pressure logger has a 
manufacturer-reported long-term stability of ±2 mbar/yr, during our 5-month deployment, the observed drift 
was significantly large: the equivalent of 0.5 ft of water depth. We illustrate the robustness of our drift correction 

Figure 2.  Schematic of data transmission to the cloud and post-processing 
workflow. After data is collected in the field (bottom), application programming 
interfaces are used to transmit data to cloud-based storage and route data 
through post-processing algorithms. Cloud storage allows data to be easily 
visualized through supplementary web applications (optional pathway, top).

https://fastapi.tiangolo.com
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through comparison of the SuDS pressure logger with a co-located commer-
cial pressure logger in Figure S3 in Supporting Information S1.

Once in the cloud, data and images can be loaded to other web interfaces for 
real-time communication of flood hazards.

2.4.  Case Study Location: Beaufort, North Carolina

Our case study location for assessing the utility of this new sensor framework 
for measuring the incidence and drivers of chronic floods is Beaufort, NC 
(Figure 3). Beaufort is a historic small town on the southeastern coast of NC 
and a popular tourist destination. Downtown Beaufort is a hub of activity 
during the summer months, but roadway flooding has rendered shops and 
restaurants inaccessible during high-tide events in recent years. Water levels 
at the local tide gauge (NOAA 8656483) surpassed the NOAA HTF thresh-
old on one day in 2000, four days in 2019, and is projected to surpass the 
threshold 6–15 days per year by 2030 (Sweet et al., 2020).

Working with Beaufort officials, we installed a single SuDS pressure logger 
and gateway in June 2021 at the location of a flood hotspot on Front Street, 
the main waterfront roadway in Beaufort (Figure 3b). This portion of Front 
Street is protected by bulkheads, which according to local officials, are rarely 
overtopped during high-tide events. Therefore, stormwater infrastructure was 
hypothesized to play a large role in chronic roadway floods. The stormwater 
network at this location consists of two storm drains located on opposite sides 
of the street that connect to an outfall one block to the southeast. This outfall 
empties into Taylors Creek, a tidal creek connected to the Atlantic Ocean via 
Beaufort Inlet. The pressure logger was installed in the drain on the south 
side of the street and the gateway on a neighboring light post (Figure 1a). 
The pressure transducer was positioned just above the bottom of the storm 
drain, at the elevation of the bottom of the outfall pipe (3.14  ft below the 
top of the roadway), such that the transducer records air pressure when the 
drain is completely empty of water. To visually confirm roadway flooding 
and capture a larger range of flood extent, we pointed the camera at the storm 
drain across the street, which is at a slightly lower elevation (Figure 3b). A 
NOAA tide gauge (8656483) is located 0.6 miles west of the SuDS, which 
allows for robust comparison of measured flood frequency with those esti-
mated using local flood proxies (i.e., when tide gauge water levels exceed 
the NWS minor flood or NOAA HTF threshold). Data from a NWS station 
1.2  miles north of the SuDS (Beaufort Smith Field, KMRH) was used to 
analyze precipitation patterns during observed flood events (Figure 3a).

3.  Results and Discussion
3.1.  Flood Measurements

Over the course of five months (22 June 2021–30 November 2021), the SuDS captured 14,770 measurements of 
storm drain water levels and 38,616 images. There were four data gaps in storm drain water levels during the study 
period due to battery depletion in the pressure logger (8/14–8/19, 9/20–9/22, 10/14–10/15, and 10/25–11/04), 
totaling 21 days of missing data (13% of study period). Based on camera images, two roadway flood events 
occurred during these data gaps (10/29 and 11/4); however, because we do not have in situ knowledge of storm-
water capacity from the pressure loggers, we do not include these floods in our calculation of flood frequency or 
discussion of flood drivers below.

On every day of measurement, the SuDS pressure logger recorded water from the tidal creek (receiving water 
body) entering the storm drain with each rising tide. Hence, the stormwater network was always at reduced 

Figure 3.  (a) Overview map of Beaufort, NC and the location of a local 
National Oceanic and Atmospheric Administration tide gauge (8656483). (b) 
Map of the study area showing the stormwater network (and designed flow 
direction), location of the Sunny Day Flood Sensors pressure logger, gateway, 
and field of view for the camera.
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drainage capacity at high tide, meaning that the network of pipes and catch 
basins could not convey runoff from the roadway to the tidal creek as designed 
during a rain event. We identified 24 discrete flood events where water levels 
surpassed the elevation of the top of the storm drain and then receded back 
into the drain. Using this definition of a flood event, it is possible to have more 
than one event in a day. However, given this definition, not all of the detected 
floods extended onto the roadway and impacted roadway functioning. As 
illustrated by the roadway cross-section in Figure 4, flood extent during 11 
flood events was limited to parking spaces (water level < 2.8 ft NAVD88), 
six extended into the roadway (2.8 ft < water level < 3.15 ft NAVD88), and 
an additional seven flood events overtopped the curb and extended onto the 
sidewalk (water level > 3.15 ft NAVD88).

The 24 measured flood events in Beaufort can be classified into two 
types based on drivers, which we identify using imagery, the shape of 
the stormwater hydrograph, and local precipitation data. The first type of 
flooding—“sunny-day flooding”—is caused by high water levels in the tidal 
creek which fill the stormwater network until water overtops onto the street 
(Figure 5a). The shape of the storm drain hydrographs for these floods are 
smooth and periodic, following the predicted tide (Figure 5b). The second 
type of flooding—“rainy-day flooding”—occurs during rain storms. In 
almost all cases, these floods occur when the capacity of the stormwater 
network is reduced by elevated water levels in the tidal creek such that runoff 
floods the roadway (Figure 6a). The storm drain hydrographs for this type of 
flooding are characterized by sharp increases in water level above the longer 

period fluctuations, which coincide with rain events (Figures 6b and 6c). We do not classify these floods further 
based on tidal influence primarily because we found that rainy-day floods occurred at all stages of the tide (rising, 
peak, and ebbing) and it is unclear to what extent high groundwater contributes to flood occurrence or extent. 
The six storms that resulted in rainy-day flooding were short-lived with somewhat intense precipitation (duration: 
25 min—2.4 hr, amount: 0.45—1.58 inches), but all storms were below the 1 year return period based on Atlas 
14 point precipitation frequency estimates for the nearby Morehead City NWS Station (NWS, 2022). Hence, the 
rainy-day floods that we observe are primarily driven by SLR.

Using these definitions, we observed 18 sunny-day and 6 rainy-day flood events over the five-month study. The 
two types of flood events had distinctly different flood durations and magnitudes (Figure 7a). Sunny-day flood 
events were long in duration (median duration = 86.6 min) and led to the highest magnitude of flooding during 
the study period (1.27 ft above the top of the storm drain). Rainy-day flooding was much shorter in duration 
(median duration = 10.9 min) and spanned a smaller range of flood magnitudes (0.1–0.6 ft above the top of the 
storm drain).

3.2.  Comparison With Tide Gauge Data and Flood Thresholds

Generally, storm drain water levels agreed well with NOAA tide gauge observations; for our entire data record 
(flood and non-flood events), the RMSE of storm drain water levels compared to NOAA gauge water levels was 
0.23 (2.7) and 0.2 ft (2.4 inches) excluding days when it rained. During sunny-day flood events, there was very 
strong agreement between observations (RMSE = 0.1 ft), whereas during rainy-day floods, storm drain water 
levels diverged greatly from tide gauge observations (RMSE = 1.81 ft). The NOAA HTF flood threshold for the 
Beaufort tide gauge is 3.23 ft NAVD88 (Sweet et al., 2020), which spans just above the crest of the roadway at 
the location of the SuDS (Figure 4). The NWS minor flood threshold is slightly lower at 2.92 ft NAVD88, which 
according to the NWS corresponds to the elevation where at the west end of Front Street begins to flood (https://
water.weather.gov/ahps2/hydrograph.php?wfo=mhx&gage=bftn7). Using SuDS data, we measured 18 floods 
below the NOAA HTF flood threshold, 5 of which were rainy-day floods. Similarly, we measured 12 flood events 
below the NWS minor flood threshold, two of which were rainy-day floods. If we use these thresholds and the 
NOAA tide gauge water levels to determine flood frequency for the same time period as the SuDS measurements, 
we find four discrete exceedances of the NOAA HTF threshold and eight exceedances of the NWS minor flood 
threshold (Figure 4). Note that due to battery outages in the SuDS pressure logger (Section 3.1), we omit two 

Figure 4.  Cross section of the roadway and maximum water levels during 
flood events measured by the Sunny Day Flood Sensors pressure logger in 
Beaufort, NC between 22 June and 30 November 2021. Here we define a flood 
event as water levels surpassing the elevation of the top of the storm drain. The 
color of horizontal lines indicates the type of flood event. National Oceanic 
and Atmospheric Administration (NOAA) and National Weather Service flood 
thresholds are shown as dotted lines; the number in parentheses indicates the 
number of times water levels at the Beaufort NOAA tide gauge exceeded these 
thresholds during the measurement period (see text for detailed comparison). 
Water levels above the monitored drain are interpolated across the roadway, 
but the spatial extent was also confirmed using camera images (e.g., Figures 5 
and 6).

https://water.weather.gov/ahps2/hydrograph.php?wfo=mhx%26gage=bftn7
https://water.weather.gov/ahps2/hydrograph.php?wfo=mhx%26gage=bftn7
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tide-gauge exceedances of the NWS minor flood threshold from this total (i.e., we did not capture two floods 
with the SuDS that were otherwise detected as tide gauge exceedances of the NWS minor flood threshold). It is 
not surprising that our measured flood incidence is higher than the proxy provided by the NOAA HTF thresh-
old given that this threshold is not intended to capture land-based sources of flooding: here, rainfall runoff and 
reduced capacity in stormwater infrastructure. The NWS minor flood threshold is impact-based, meaning that 
it reflects the elevation of vulnerable infrastructure, but it is calibrated empirically to NOAA tide gauge water 
levels and therefore also does not encapsulate the effects of land-based sources. Although the data in this study 
only span 5 months, the rainy-day events constitute 25% of all floods. Hence, while flood proxies that rely exclu-
sively on tide gauge water levels for determining flood incidence (i.e., the NWS and NOAA HTF thresholds) are 
useful for forecasting high tide events, the actual flood frequency may be significantly higher in areas where the 
stormwater network has reduced capacity.

Figure 5.  A series of “sunny-day” flood events measured in November 2021 in Beaufort, NC. (a) Photo of the flooded 
roadway during the highest observed water level on 8 November 2021 and (b) measured water levels above the storm drain 
pressure transducer relative to the road surface.
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3.3.  Sensor Limitations

The SuDS have supplied a rare look at conditions within storm drains prior, during, and after chronic floods in 
Beaufort, NC. As a low-cost sensor framework, however, there are limitations. First, we found that the low-cost 
pressure transducer is sensitive to temperature, despite on-board manufacturer supplied corrections, and needs 
to be calibrated prior to use to ensure data quality. Second, we have documented (and corrected for) drift in the 
pressure measurements that may be caused by prolonged inundation or intermittent wetting-drying cycles (Figure 
S2 in Supporting Information S1). A more robust pressure transducer would likely eliminate these limitations, 
albeit at an increase to the sensor cost. We also use NOAA air pressure data to convert the raw pressure data from 
the in situ pressure transducer to gauge pressure. Future iterations of the SuDS framework could incorporate an 
atmospheric pressure transducer directly on the gateway. Third, the SuDS framework uses Bluetooth to send data 
from the pressure logger to the gateway, but the range of this connection is impeded by the metal grate covering 

Figure 6.  Two “rainy-day” flood events on 3 and 4 August 2021 in Beaufort, NC. (a) Photo of the flooded roadway during 
the 3 August flood event, (b) 1-hr rain intensity from the Beaufort Smith Field precipitation gauge (see Figure 3a), and (c) 
measured water levels above the storm drain pressure transducer relative to the road surface.
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the storm drain. This means the gateway and pressure logger must be fairly close to each other (line of sight) for 
consistent data uploads. Poor Bluetooth connectivity or loss of connectivity can also lead to data loss. Lower 
bandwidth communications technologies (i.e., LoRa) could be used to extend the distance between the monitored 
storm drain and gateway and provide more consistent data uploads.

The SuDS are designed to continuously collect data during floods, but real-time communication between the 
pressure logger and the gateway ceases once the logger becomes submerged. This loss of communications is 
a common drawback of flood-sensing technologies that rely on wireless communication. But contrary to other 
technologies, our logger continues to collect water level data while underwater and transfers the data once 
communications are re-established. The camera incorporated in the gateway also provides real-time photos of 
the roadway even when the pressure sensor communications are interrupted, and therefore a visual confirmation 
of flood incidence and spatial extent. In addition, flooding can be inferred by the last recorded water level and 
the timing of lost communication: our real-time web app shows a “flooding” banner on the sensor site's page 
if communications are lost and the last recorded water level was within 0.5 ft of the roadway surface. Machine 
learning techniques (e.g., long short term memory) could be useful in prediction of flood depths during sensor 
communication outages given external data streams of flood drivers (e.g., tide gauge water levels, rainfall inten-
sity), a potentially fruitful avenue for future work. Finally, the communications gateway requires electricity, so 
this sensor framework could stop functioning during a major flood event if power is lost for an extended period 
of time (>1 hr).

3.4.  Implications for Community Engagement and Hazard Communication

The SuDS sensor framework presented here can contribute to enhanced flood awareness and public safety in the 
near-term, as well as improved resilience to climate change in the long-term. Local officials typically block off 
flooded roads to protect public safety, but with chronic flooding, it is not always evident when roads will need to 
be closed and when they can be reopened. The SuDS framework can be used to notify emergency management 
officials when water levels begin to approach the roadway (i.e., sensor communications are lost due to flooding) 
or once water levels have receded (i.e., communications resume). Such alerts reduce the risk of vehicle damage 
and minimize the duration of disruptions, as the road can be reopened promptly. Local residents can also view 
images in real-time on the web app to determine if they can travel safely or need to adjust their plans (“Flood 
Cam” tab in Figure 8).

The SuDS framework can be used to support broader public engagement and education efforts concerning the 
impacts of climate change. Unlike many climate impacts, chronic coastal flooding is visible, frequent, and can 
be directly linked to SLR. For example, the SuDS framework could be integrated into a community science 

Figure 7.  (a) Comparison of flood magnitude (i.e., depth of water above the top of the storm drain) and duration for both 
sunny-day and rainy-day floods, with boxplots showing the distribution of each variable for all floods. (b) Comparison of 
measured storm drain water levels during sunny-day and rainy-day floods to water levels recorded at the local National 
Oceanic and Atmospheric Administration tide gauge.
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project to document the extent and disruptions associated with tidal floods (e.g., North Carolina King Tides 
Project, 2023). Informational signs near the SuDS can raise awareness around the issue of chronic flooding and 
the impacts of SLR.

As communities increasingly prepare for higher sea levels, a stronger understanding of the incidence and drivers 
of chronic flooding can inform evidence-based adaptation plans and investments. First, data from the SuDS 
framework can help identify the relative contributions of rainfall and high-water levels in receiving water bodies. 
Such evidence is valuable because some adaptation strategies may only combat flooding from one source. For 
example, higher bulkheads can prevent overtopping, but will not prevent water from entering through the storm-
water network. Second, the SuDS framework can improve estimates of future flood frequency by identifying the 
range of conditions that lead to flooding. Adaptation strategies designed for extreme events, such as high sand 
dunes, will have little effect or exacerbate smaller floods along the back-side of islands or bays. With greater 
evidence on how chronic flooding will evolve into the future, communities can assess their needs and priorities 
and allocate resources accordingly.

Finally, the SuDS framework is purposefully open-source and low-cost, with the goal of enabling broader adop-
tion by researchers and community members alike. Chronic coastal flooding is ubiquitous in low-lying coastal 
communities, and many questions remain about its drivers and impacts. By monitoring flooding where people 
live and by capturing flooding from multiple drivers, this sensor framework can enable widespread progress in 
understanding the causes of such events and devising potential solutions.

4.  Conclusions
Historical water levels, as measured at tide gauges, have shown that SLR is increasing flood frequency over time. 
Tide gauges only capture marine-based flood contributions. Here we show using a new low-cost, open-source 
sensor framework that land-based sources of flooding are important components of floods driven by SLR. For a 
5 month deployment in the Town of Beaufort, NC, we find that one quarter of the recorded flood events (25%) 
were driven by land-based sources (i.e., stormwater runoff) during moderate high tides where the stormwater 
network had a reduced drainage capacity.

The accuracy of the data collected through the sensor framework—which consists of an in situ storm drain pres-
sure logger, subaerial roadway camera, and real-time wireless gateway—was corroborated through comparison 

Figure 8.  Screenshot of the Sunny Day Flood Sensors (SuDS) web app showing live water level data from the monitored 
storm drain in Beaufort, NC. This web app also shows sample sites (and flooding status) on an overview map (“Map” tab), 
real-time images from SuDS gateway cameras (“Flood Cam” tab), and information about the project (“About” tab).
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to (a) water levels measured at a neighboring NOAA tide gauge, (b) photos from the subaerial roadway camera, 
and (c) a co-located pressure logger. By instrumenting the storm drain directly, as opposed to using subaerial 
measurements of water levels (e.g., air sonar), we gain novel insight into the capacity of stormwater networks 
and their influence on coastal flooding, information on flood drivers (tides, tides + rain), and definitive measures 
of flood frequency. Our results demonstrate that measurements of flood frequency that rely solely on tide gauge 
proxies (i.e., the NWS and NOAA HTF thresholds) may be substantial underestimates of coastal flooding in areas 
with stormwater networks.

Additional research is needed to assess how the contributions of land- and marine-based sources of coastal flood-
ing vary across geographies and may evolve under future climate change. This study occurred at one location on 
the NC coast, and our results may not be representative of the drivers of flooding in other areas. Moreover, as SLR 
and rainfall patterns change, the relative contributions of these drivers may shift. Developing more accurate flood 
frequency measures across geographies and over time is also needed for social science research. Flood measures 
that more closely align with the lived experience of coastal residents are critical for understanding the social and 
economic consequences of coastal flooding, today and in the future.

Data Availability Statement
The storm drain water level data used for flood detection and analysis in the study are archived on Zenodo 
(https://doi.org/10.5281/zenodo.7135955) and can also be downloaded from our project web app (https://
sunnydayflood.apps.cloudapps.unc.edu). The software for the SuDS sensor framework are available on GitHub 
(https://github.com/sunny-day-flooding-project) and tutorials are archived on Zenodo (Hayden-Lowe et al., 2022, 
https://doi.org/10.5281/zenodo.7017187).
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iations. A link to Miyuki Hino's ORCID (0000-0001-9369-5769) has since been added. In the seventh sentence 
in the Abstract, the word “percentage” was changed to “percent.” Also in the Abstract, “SW” has been changed 
to “stormwater networks.” The acronyms SW and PL were not spelled out throughout the main body of the text. 
The acronyms have been changed to “stormwater” and “pressure lager.” The “W.V. Sweet et al., 2018” citation 
in the first three paragraphs of the Introduction has been changed to “Sweet et al., 2018.” The “W. Sweet et al., 
2020” citation has been changed to “Sweet et al., 2020” in Sections 2.4 and 3.2. The W.V. Sweet et al., 2018, and 
W. Sweet et al., 2020, references have been changed in the References section to correspond with the updated 
citations. These errors have been corrected, and this may be considered the authoritative version of record.
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